AVF 125S: Valve drive SUT with spring return

How energy efficiency is improved

Electric cut-off and auto-adjustment to save energy.

Areas of application

Actuation of through and three-way valves in the VXN/BXN, VUD/BUD and VUE/BUE, DN15 to DN50 series. For controllers with continuous output ($0-10 \mathrm{~V}$) or switching output (2-point or 3-point control).

Features

- Actuator with spring return and pushing force of 500 N
- The return spring moves the actuator back to a pre-determined end position in the event of a power failure or the power being switched off or whenever a limiter is activated
- Two versions; NC closes the valve, NO opens the valve if the spring is activated
- Stepping motor with SUT (Sauter Universal Technology) electronic control unit and electronic load-dependent cut-off
- Automatic detection of control signal applied (continuous or switching)
- The type of characteristic curve (linear, quadratic or equal percentage) can be adjusted in the drive
- Direction of travel can be selected via screw terminals when making electrical connection or remotely

- Coding switch for selection of characteristic and running time (60 or 120 sec .)
- Maintenance-free gearbox and holding magnet
- LED display

Technical description

- $24 \mathrm{~V} \sim$ power supply
- Two-part housing made of self-extinguishing plastic, lower section black, cover transparent
- Body of gearbox and mounting bracket for fitting valve made of cast zinc
- Electrical connections (max. $1.5 \mathrm{~mm}^{2}$) with screw terminals
- Cable entry M20 $\times 1.5$
- Installation position: vertical to horizontal, but not upside down

Type	Running time sec	$\begin{gathered} \text { Pushing 1) } \\ \text { force } \end{gathered} \quad \text { Power }$	Weight
	Reset function	N	kg
For valves with equal-percentage characteristic, can be switched over to linear			
AVF 125S F132 $60 / 120$	18 ± 10 closed (NC)) $500 \quad 24 \mathrm{~V} \sim$	2,4
AVF 125S F232 $60 / 120$	18 ± 10 open (NO)	$500 \quad 24 \mathrm{~V}$ ~	2,4
Positioner:			
Control signal 1	$0 \ldots 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=100 \mathrm{k} \Omega \quad \mathrm{S}$	Starting point U_{0}	0 or 10 V
Control signal 2	$4 \ldots .20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=50 \Omega$ C	Control span $\Delta \mathrm{U}$	10 V
Position feedback signal	$0 . .10 \mathrm{~V}$, load $>2,5 \mathrm{k} \Omega \quad$ Swis	Switching range $\mathrm{X}_{\text {sh }}$	200 mV
Power supply $24 \mathrm{~V} \sim 2$)	$\pm 20 \%, 50 \ldots 60 \mathrm{~Hz}$	Degree of protection ${ }^{3}$	IP 54 (EN 60529) III as per IEC 60730
Power consumption			
AVF 12. S F. 32	$5 \mathrm{~W} \quad 8,4 \mathrm{VA}$	Wiring diagram AVF 125	A10455
on starting	$30 \mathrm{VA}(\mathrm{max} .1 \mathrm{~s}){ }^{4)}$	Dimension drawing	M07429
Nominal stroke ${ }^{5}$)			
AVF 125S	$8,0 \mathrm{~mm}$	Fitting instructions AVF 125 Declaration on materials	MV 506067
Max. media temperature	$100{ }^{\circ} \mathrm{C}$		MD 51.368
Permissible ambient temp.	$-10 . .55{ }^{\circ} \mathrm{C}$	Declaration on materials	
Ambient humidity	$\begin{aligned} & <95 \% \text { rh } \\ & \text { without condensation } \end{aligned}$		

[^0]```
Accessories
0313529 001* Split-range unit for settings sequences. MV 505671; A09421
0370880 001 Mechanical stroke indicator; MV 505517
0370881 001* Auxiliary change-over contacts 1), simple; MV }50551
0370882 001* Auxiliary change-over contacts '1), simple, and pot. 2000 \Omega, 1 W; 24 V; MV 505517
0370882 006* Auxiliary change-over contacts 1), simple, and pot. }1000\Omega,1\textrm{W};24\textrm{V};\mathrm{ MV }50551
0370883 001* Potentiometer 2000 \Omega, 1 W; 24 V; MV 505517
0370883 006* Potentiometer 1000 \Omega, 1 W; 24 V; MV 505517
0372249 001* Intermediate piece required for media temperature > 100 }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ for BXN / VXN
(recommended for temperature < 10 }\textrm{C}\mathrm{); MV 505932
0372460 001 Cable screw fitting (plastic M20x1,5) incl. locking nut and gasket, max. 2 pcs.
*) Dimension drawing or wiring diagram are available under the same number
1) Infinitely variable; max. load 2 (1) A, 12...250 V~, min. load 250 mA, 12 V~
```


## Operation

On starting the unit for the first time (after applying power), or on re-starting the unit after the reset function has been triggered, there is a wait of 45 seconds for the reset function to become operable.
Depending on how it is connected (see wiring diagram), the actuator can be used as a continuous drive ( $0 . . .10 \mathrm{~V}$ and/or $4 \ldots 20 \mathrm{~mA}$ ), a 2-point drive (open/close) or a 3-point drive (open/stop/close) with intermediate position. When control signals 1 (3u / 03) and 2 ( $3 \mathrm{i} / \mathrm{04}$ ) are connected simultaneously, the input with the higher value has priority.
The running time can be matched to the requirements of the task using switches S1 and S2. The characteristic (equal-percentage, linear or quadratic) can be selected via switches S3 and S4. The AVF 124S is combined with valves that have a linear basic characteristic such as the VXN and BXN valves. The AVF 125S is combined with valves that have an equal-percentage basic characteristic such as the VUD, BUD, VUE and BUE valves. The AVF 125 S can be fitted on a valve with a linear characteristic (e.g. VUE 050F200), but you must pay attention to the position of the coding switches.

## Connected as a 2-point actuator

Opening/closing can be effected via two wires. Power is applied to the drive via terminals 1 / MM and $2 \mathrm{a} / 01$. When power is connected to terminal $2 \mathrm{~b} / 02$, the valve's control passage opens. When power is switched off, the drive goes to the opposite end position and closes the valve.

## Connected as a 3-point control unit

By connecting power to terminal $2 \mathrm{a} / 01$ or $2 \mathrm{~b} / 02$, the valve can be moved to any position. The coupling rod extends and opens the valve if power is applied to terminals $1 / \mathrm{MM}$ and $2 \mathrm{~b} / 02$. It retracts and closes the valve if the power circuit is closed via terminals $1 / \mathrm{MM}$ and $2 \mathrm{a} / 01$.
In the end positions (on hitting a stop in the valve or reaching the maximum stroke) or in the event of an overload, the electronic motor cut-off responds (no end switches). The direction of the stroke can be changed by swapping the power-supply wires over ( $2 \mathrm{a}, 2 \mathrm{~b} / 01,02$ ).

## Connections for control voltage 0...10V and/or $4 \ldots . .20 \mathrm{~mA}$

The integrated positioner controls the drive as a function of the controller's positioning signal $y$.
The voltage signal of $0 . . .10 \mathrm{~V}$ - is connected via terminal $3 \mathrm{u} / 03$ and the current signal is connected via terminal 3i / 04.
Direction of operation 1 (mains power to internal connection $2 \mathrm{a} / 01$ ):
the coupling rod extends and opens the valve (control passage) as the positioning signal rises.
Direction of operation 2 (mains power to internal connection $2 \mathrm{~b} / 02$ ):
the coupling rod retracts and closes the valve (control passage) as the positioning signal rises.
The starting point and the control span are both permanently set.
There is a split-range unit available (as an accessory) for setting partial ranges (only for control signal 1). After the emergency position has been implemented, or when there is a power failure, the drive readjusts itself automatically. If an adjustment is needed, it can be triggered via the pushbutton on the electronic circuit board (top left).
After power has been applied, the stepping motor moves to the lower stop, connects to the valve spindle and moves to the upper stop in the valve, thereby determining the closed position. Depending on the control voltage, any stroke between 0 and 8 mm can then be obtained. Thanks to the electronics unit, no steps can be lost, and the drive needs no periodical re-adjustment. Parallel operation of more than one drive of the same type is guaranteed.
If the power supply fails or is switched off, or a monitoring contact is triggered, the retention magnet releases the gears and the pre-tensioned spring moves the drive - depending on the variant - into the end position. In so doing, the drive's control function is blocked for 45 seconds so that the end position is always attained. The reset function is retarded depending on the speed, so that no pressure surges can occur in the line.

The feedback signal $y_{0}=0 \ldots . .10 \mathrm{~V}$ corresponds to the effective stroke of 0 to 8 mm .
If the control signal $(0 . .10 \mathrm{~V})$ is interrupted and direction of operation 1 is connected, the valve closes fully ( $0 \%$ position).

The valve's characteristic can be selected using the coding switch. The characteristics can be generated only if the drive is used as a continuous drive. Other switches enable the running times to be set. These can be applied irrespective of whether the 2-point, 3-point or the continuous function has been chosen.

## Coding switches for running time selection

AVF 124S, AVF 125S

| Run time per mm | Switch coding | Run time for 8 mm stroke |
| :---: | :---: | :---: |
| 7,5 s |  | $60 \mathrm{~s} \pm 2$ |
|  |  |  |
| 15 s |  | $120 \mathrm{~s} \pm 4$ |
| $m^{\infty}=\text { factory setting }$ |  |  |

Coding switches for characteristics selection
AVF 125S

| Desired character. curve | Switch coding | Characteristic curve for valve | Characteristic curve for drive | Effective on valve |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| $\begin{aligned} & 0 \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |  |  |
| $\begin{aligned} & \text { 厄̄ } \\ & \stackrel{\text { ® }}{\leftrightharpoons} \end{aligned}$ |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| $\lim _{\text {n }}^{\infty} \text { = factory setting }$ |  |  |  |  |

B10711a

LED indicator: normal operation
AVF 125 S
$\begin{array}{ll} & \text { grün } \\ & \text { green } \\ \text { verde } \\ \text { verde } \\ \text { grön } \\ \text { groen }\end{array}$


B10105a

## LED indicator: safety function



Split-range unit (accessory 0313529)
The starting point $\mathrm{U}_{0}$ and the control span $\Delta \mathrm{U}$ can be set using the potentiometer. This makes it possible to activate several regulating units in sequence or in cascade using the controller's control signal. If this accessory is fitted, it is not possible to fit any auxiliary contacts or a potentiometer.

## Engineering and fitting notes

The ingress of condensate, drops of water etc. along the valve spindle and into the drive should be prevented.
The drive and valve are fitted together by hand, then the screws are tightened; no further adjustment is necessary. The drive is delivered ex works in the open or middle position.
On the 'normally closed' version, the spacer on the lifting rod has to be removed when the valve is fitted.
The idea of having a stepping motor and an electronics unit ensures that several actuators of the same type can be run in parallel.
The maximum number of accessories that can be fitted is one stroke indicator plus one additional accessory: auxiliary contacts, potentiometer or combination, or split-range unit.
The power consumption on starting is relatively high. It occurs only on a cold start or after the spring return has been activated and lasts max. 1s. A random delay of up to 20s is fitted in the drive so that, if several drives are run in parallel, they do not all cut in at the same time. Depending on the length of the cable, the cross-section of the cable or the transformer rating should be chosen accordingly:-

| Length of cable | Cross-section of cable | Transformer rating |
| :---: | :---: | :---: |
| Max. 30 m | $0,75 \mathrm{~mm}^{2}$ | 30 VA |
| Max. 60 m | $1,5 \mathrm{~mm}^{2}$ | 30 VA |
| Max. 100 m | $1,5 \mathrm{~mm}^{2}$ | 50 VA |

Fitting outdoors. If the devices are fitted outdoors, we recommend that additional measures be taken to protect them against the effects of the weather.

## Additional technical information

Transparent cover without lever for manual adjustment. The black housing holds the stepping motor and the electronic control unit. Underneath is the maintenance-free gear unit, the spring and the retention magnet. By breaking out a pre-scored circle in the housing, it is possible to create an aperture to fit a second M20 cable screw fitting.

Auxiliary change-over contacts
Switch rating: max. 230 V a.c.; min. current 20 mA at 20 V
Switch rating: 4... 30 V d.c.; current $1 . . .100 \mathrm{~mA}$

## CE conformity

EMC directive 2004/108/EC Machine directive 98/37/EEC///B
EN 61000-6-1
EN 61000-6-2
EN 61000-6-3
EN 61000-6-4

## Wiring diagram



## Accessories

370881


A01360a 370883


NC = normally closed $\mathrm{NO}=$ normally open

0313529


## Dimension drawing



Printed in Switzerland
Right of amendment reserved
N.B.: A comma between cardinal
numbers denotes a decimal point © Fr. Sauter AG, CH-4016 Basle
715136800304


[^0]:    Max. pushing force: 550 N or, with spring return, 1500 N
    $24 \mathrm{~V}=$ not possible
    Degree of protection IP 54 only with M20 cable screw fitting
    On starting or after spring return operation
    Maximum stroke of drive $=10.0 \mathrm{~mm}$

