AVN 224S: SUT actuator with safety function to DIN 32730

How energy efficiency is improved

Automatic adaptation to valve, precision control and high energy efficiency with minimal operating noise.

Areas of application

Actuation of through or three-way valves in the VUG/BUG series as per EN 14597 and VUP as per DIN 32730150 . For controllers with continuous output ($0 \ldots 10 \mathrm{~V}$ or $4 \ldots 20 \mathrm{~mA}$) or switching output (2point or 3-point control).

Features

- Actuator with safety function and pushing force of 1100 N , in 'normally closed' or 'normally open' versions
- DC motor with SUT (Sauter Universal Technology) electronic control unit and electronic load-dependent cut-off
- Automatic detection of control signal applied (continuous or switching), display via 2 LEDs
- The type of characteristic curve (linear, quadratic or equal percentage) can be adjusted in the drive
- Independent adaptation to valve stroke between 8 and 49 mm , captive even if the power is turned off

- Direction of travel can be selected via screw terminals when making electrical connection or remotely
- Coding switch for selection of characteristic and running time ($2 \mathrm{sec} . / \mathrm{mm}, 4 \mathrm{sec} . / \mathrm{mm}$, $6 \mathrm{sec} / \mathrm{mm}$)
- Push-buttons on outside of housing for manual adjustment with motor cut-off and as trip for re-initialisation
- Easy assembly with valve, spindle connection takes place automatically after application of control voltage
- Many adaptors allow assembly on third-party valves

Technical description

- Power supply 230 V with modules or direct connection for 24 V ~ or $24 \mathrm{~V}=$, continuous activation also permissible at 230 V
- Two-part housing made of self-extinguishing yellow plastic and sealing to IP66 protection class
- Maintenance-free gearbox in sintered steel, gearbox base-plate in steel
- Spring assembly in stainless steel
- Patented drive-valve coupling
- Mounting column made of stainless steel and mounting bracket for fitting valve made of cast light alloy
- Electrical connections (max. $2.5 \mathrm{~mm}^{2}$) with screw terminals
- Three knock-out cable entries for M20×1.5 ($2 \times$) and M16×1.5
- Fitting position: vertical to horizontal, but not upside down

Type	Run-time			Stroke W	Weight	
	Motor s/mm	Spring $\mathbf{s}^{1)}$	$\begin{gathered} \text { Force } \\ \text { B } \end{gathered}$	mm	$\mathbf{k g}$	
Actuator spindle normally retracted						
NC with: VUG / BUG						
NO with: VUP						
AVN 224S F132 2	2 / 4 / 6	15... 30	1100	14... 40	5,6	
Actuator spindle normally extended						
NO with: VUG / BUG						
NC with: VUP						
NC with: V6R/B6R						
AVN 224S F132-5 2	2/4/6	15... 30	1100	14	5,6	
AVN 224S F132-6 2	2/4/6	15... 30	1100	40	6	
AVN 224S F232	2/4/6	15... 30	1100	0... 40	5,6	
Positioner: ${ }^{2}$						
Control signal 1		$0 . .10 \mathrm{~V}, \mathrm{R}$	$100 \mathrm{k} \Omega$	Starting point U0		0 V , or 10 V
Control signal 2		$4 . .20 \mathrm{~mA}$,	50 Ω	Control span $\Delta \mathrm{U}$		10 V
Position feedback signal		0... 10 V , lo	2,5 k Ω	Switching range $\mathrm{X}_{\text {sh }}$		300 mV

[^0]

```
Accessories
0313529 001* Split range unit to set sequences, MV 505671; A09421
Module, plug-in type, 3-point activation, additional power 2 VA
0372332 001* 230 V }\pm15% voltage supply, MV 505901
0372332 002* 100 V to 110 V }\pm10% voltage supply, MV 50590
Auxiliary changeover switches (2 pcs. each) 12... }250\mathrm{ V ~
0372333 001* Continuously adjustable, min. }100\mathrm{ mA and 12 V, additional load 6(2) A, MV }50586
0372333 002* Gold-plated contacts, from 1 mA and up to 30 V; further range 3(1) A; MV }50586
0372334 001* Potentiometer 2000 \Omega, 1 W, 24 V; installation as per MV 505894
0372334 002* Potentiometer 130 \Omega, 1 W, 24 V; installation as per MV 505894
0372334 006* Potentiometer 1000 \Omega, 1 W, 24 V; installation as per MV 505894
0372336 180* Adaptor 1) (required for medium above 130 }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ and up to }18\mp@subsup{0}{}{\circ}\textrm{C},\textrm{MV}505902
0372336 240* Adaptor }\mp@subsup{}{}{1)}\mathrm{ (required for medium above }18\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ and up to 240 }\mp@subsup{}{}{\circ}\textrm{C}, MV 505902
Installation kit for AVN 224S F132 on Sauter valves (for 0372338 002, no adaptor required)
0 3 7 2 3 3 8 0 0 1 ~ V / B 6 ~ u p ~ t o ~ D N ~ 5 0 ~ a n d ~ V / B X D , ~ V / B X E ~ u p ~ t o ~ D N ~ 5 0 ~ w i t h ~ s t r o k e ~ 1 4 ~ m m . ~ M V ~ 5 0 5 9 0 3 ~
0372338002 V/B6 of DN 65...150 and V/BXD, V/BXE from DN 65 with stroke 40 mm. MV 505903
0372338003 Conversion kit for AVM 234S F132-5 on standard drive AVM 234S F132, MV 505903
0372338004 Conversion kit for AVM 234S F132-6 on standard drive AVM 234S F132, MV 505903
Set of adaptors for non-Sauter valves
0372376010 Siemens with 20 mm stroke or spindle ø10 mm, MV 505974
0372376014 Siemens with 40 mm stroke or spindle ø14 mm, MV 505974
0372377 001 JCI DN15... }150\mathrm{ with 14, 25 or 40 mm stroke or spindle ø10, 12 or 14 mm, MV 505975
0 3 7 2 3 7 8 0 0 1 ~ H o n e y w e l l ~ w i t h ~ 2 0 ~ m m ~ s t r o k e , ~ M V ~ 5 0 6 0 6 9
0372378002 Honeywell with 38 mm stroke, MV 506069
0372386001 LDM Typ RY113 R/M, MV P100000538
0372389001 ITT-Dräger, DN 15...32, MV P100000376
0372389002 ITT-Dräger, DN 40...50, MV P100000376
0378263001 End stop guide (required for valves DN15...50 VXD, VXE, BXD, BXE)
0378263002 End stop guide (required for valves DN15 and reduction steps of types V / B6)
0 3 8 6 2 6 3 0 0 1 ~ S c r e w e d ~ c a b l e ~ f i t t i n g , ~ M 1 6 \times 1 . 5 ~
0386263002 Screwed cable fitting, M20\times1.5
0 3 7 2 3 8 7 0 0 1 ~ F i t t i n g ~ k i t ~ S A U T E R - S a t c h w e l l ~ V Z F 1 7 2 7 ~
*) Dimension drawing or wiring diagram available under the same numbe
```

Adaptor is not required for the F132-6 version
Engineer the transformers for this value, otherwise functional faults may occur
For higher medium temperatures ($180^{\circ} \mathrm{C}$ or $240^{\circ} \mathrm{C}$), an adaptor is necessary (see Accessories)

Operation

After a new start, or after a start following activation of the emergency function (terminal 21), up to 45 s of waiting time will pass before the drive is available again. Depending on the type of connection (see the wiring diagram), the device can be used as a continuous-action drive ($0 \ldots 10 \mathrm{~V}$ or $4 \ldots 20 \mathrm{~mA}$), a 2-point drive (OPEN/CLOSED) or a 3-point drive (OPEN/STOP/CLOSED).
The runtime of the drive can be set with switches S1 and S2 according to the requirements in each case. Switches S3 and S4 are used to configure the characteristic (equal-percentage, linear or square)
The external pressure switches allow manual adjustment of the position. This can only function if the emergency function (terminal 21) is electrically connected and has voltage. If one of the two pushbuttons is pressed for 5 s , the drive changes over to manual operating mode. Both the LEDs flash red and green. Pressing a pushbutton (OPEN/CLOSED) moves the drive in the relevant direction. Pressing a button again stops the drive. If a button is pressed once more for at least 5 s , the drive changes over to control mode. If an emergency function is executed during manual mode, the emergency function takes priority. The drive is always in control mode after an emergency function.

Initialisation and feedback signal

The drive does not initialise itself automatically. Voltage must be connected to terminals 1 and 21, and then it is necessary to switch over to manual mode (see Description of function). First, the valve stem has to be connected with the drive shaft. This is done by moving the drive shaft out until the closing mechanism snaps shut. On version NO, the initialisation and assembly with the valve can only be carried out if the working spindle has been retracted beforehand.
As soon as the drive is connected to the valve, the safety screw must be fitted in the locking ring. Once the safety screw is fitted, a manual initialisation must be triggered. To do this, both the pushbuttons must be pressed for at least 5 s . The drive then moves to the lower stop guide of the valve. After this, it moves to the upper stop guide, and the distance measured is recorded and stored by a distance measurement system. The control and feedback signals are adapted to this effective stroke. After a voltage interruption or an emergency function, a new initialisation will not be performed and the values remain saved.
During the initialisation, the feedback signal is inactive or corresponds to a value of ' 0 '. The shortest run-time is used for initialisation. The new initialisation is only valid once the entire procedure has been completed without interruptions. Pressing a button will interrupt the procedure.
If the actuator detects a blockage, the feedback signal is set to 0 V after about 90 s in order to signal it. During this period, however, the drive will attempt to overcome the blockage. If it is possible to overcome the blockage, the normal control function is activated again and the feedback signal will be present again.

Safety function or emergency function

This actuator and its safety function conform to DIN 32730. If the supply voltage fails or is switched off, or if a monitoring contact (STB / SDB) responds, the brushless DC motor releases the gear and the drive is moved into the respective end position (depending on the version) by means of the pretensioned spring. If this happens, the control function of the drive is disabled for 45 s so that the end position can be reached in every case. Both LEDs are lit during these 45 s . The reset speed is controlled with the help of the motor so that there can be no pressure surges in the pipe. The brushless DC motor is not only used to generate the holding force, but also as a brake by the integrated eddy current brake and as a motor for the control function. The drive does not re-initialise itself after an emergency function.

Connection as a 2-point actuator (24 V)

This actuation (OPEN/CLOSED) can take place via two wires The voltage is applied to terminals $1,2 \mathrm{a}$ and 21 . Applying the voltage (24 V) to terminal 2 b causes the actuator spindle to move out. After this voltage is turned off, the drive moves to the opposite end position. In the end positions (valve stop guide, or when maximum stroke is reached) or in case of an overload, the electronic motor switch-off will respond (no limit switches).
The coding switch can be used to set the run-times. The characteristic cannot be selected in this case (resulting in the characteristic for the valve). The feedback signal is active as soon as the initialisation has been carried out and a voltage is present at terminal 21 . Terminals $3 i$ and $3 u$ must not be connected.

Connection as 3-point actuator (24 V)

The valve can be moved to any desired position by applying a voltage to terminals 2 b (or 2 a) and 21. If voltage is applied to terminals 1 and 2 b , the actuator spindle moves out and opens the valve. It moves in and closes the valve when the power circuit is closed via terminals 1 and 2a.
In the end positions (valve stop guide, or when maximum stroke is reached) or in case of an overload, the electronic motor switch-off will respond (no limit switches). The direction of the stroke can be changed by transposing the connections.
The coding switch is used to set the run-times. The characteristic cannot be selected in this case (resulting in the characteristic for the valve). The feedback signal is active as soon as the initialisation has been carried out and a voltage is present at terminal 21 . Terminals $3 i$ and $3 u$ must not be connected.
Supplied with 230 V respectively 100 V to 110 V , as 2-/3-point or with continuous control actuator (accessory 0372332)
The accessory module is slotted into place in the terminal compartment and then connected accordingly. The drive must be manually initialised together with the valve when putting into service. The coding switch on the base board can be used to select the run-times. The characteristic can be selected only in the case of continuous activation; it is governed by the characteristic of the valve.
There is a built-in switch in the module which is automatically moved into the correct position when the module is installed. With this application, the switching lever is in the upper position.
The accessory module is not suitable for 2-point control.

Connection to a control voltage ($0 . . .10 \mathrm{~V}$ and/or $4 . . .20 \mathrm{~mA}$)

The built-in positioner controls the drive dependent on the control signal from the controller, y .
The control signal used is a voltage signal ($0 \ldots 10 \mathrm{~V}-$) to terminal 3 u , or a current signal to terminal 3 i . If a control signal is simultaneously present at both terminals ($3 \mathrm{u}(0 \ldots 10 \mathrm{~V}$) and $3 \mathrm{i}(4 \ldots 20 \mathrm{~mA}$), the input with the higher value takes priority.
Direction of action 1 (mains voltage to internal connection 2a):
As the control signal increases, the actuator spindle moves out.
Direction of action 2 (mains voltage to internal connection $2 b$):
As the control signal increases, the actuator spindle moves in.
The starting point and the control span are fixed settings. To set partial ranges, a split range unit is available (and only for voltage input 3u) as an accessory (see Function of Split Range Unit); this is designed to be built into the drive.
After the supply voltage has been applied and after initialisation, the drive moves to between 0\% and 100% of each valve stroke, according to the control signal. Thanks to the electronics and the distance measurement system, no strokes are lost and the drive does not require re-initialisation at periodic intervals. When the end positions are reached, this position is checked, corrected if necessary and the new value is stored. This guarantees that several drives of the same type can run in parallel. The feedback signal $y_{0}=0 \ldots 10 \mathrm{~V}$ corresponds to the effective valve stroke of 0 to 100%.
If the control signal $0 . . .10 \mathrm{~V}$ is interrupted in direction of action 1 , the spindle retracts completely respectively in direction of action 2 extends.
The coding switch can be used to set the characteristic for the valve: linear, equal-percentage or square. This characteristic can only be produced if the device is used as a continuous-action drive. Further switches can be used to select the run-times (can be used for the 2-point, 3-point or continuous functions). Continuous activation can also be used with 230 V or 110 V . Note that the controller's neutral conductor should be connected to the control voltage. The neutral conductor of the power supply should be used only for the module.

LED display: the display consists of two-colour LEDs (red/green).

In automatic mode:

both LEDs flashing red :
upper LED lit red:
lower LED lit red:
upper LED flashing green:
upper LED lit green:
lower LED flashing green:
lower LED lit green:
both LEDs lit green:
no LED lit

[^1]In manual mode:
upper LED lit red, lower red and green: upper LED lit red and green, lower red:
upper LED flashing green, lower LED red and green:
upper LED flashing red and green, lower LED green:

upper and lower LEDs flashing red and green:

upper stop guide or 'CLOSED' position reached lower stop guide, or 'OPEN' position reached
drive is running, controlling towards 'CLOSED' position
drive is running, controlling towards 'OPEN' position
drive is stationary

Split range unit (accessory 0313529)
This accessory can be built into the drive or accommodated externally in an electrical distribution box. The starting point UO and the control span $\Delta \mathrm{U}$ can be set with the help of a potentiometer. This means that the control signal from the controller can be used to operate several regulating units in sequence or in a cascade. The input signal (partial range) is converted into an output signal of $0 . . .10 \mathrm{~V}$.

Engineering and installation notes

The penetration of condensate and dripping water, etc. into the drive along the valve stem must be avoided.
The drive is plugged directly onto the valve and is fixed with screws (no further adjustments are needed). The drive is automatically connected to the valve stem. Depending on the condition of the drive shaft when delivered and the type, its stroke is 0% or 100%.
The housing contains three break-open cable inlets which are broken open automatically when the cable inlet is screwed in.

The DC motor/electronics concept guarantees that several actuators of the same type can run in parallel. The cross-section of the connecting cable must be chosen according to the length of the line and the number of drives. With five drives connected in parallel and a line length of 50 m , we advise using a cable cross-section of $1.5 \mathrm{~mm}^{2}$ (power consumption of the drive $\times 5$).
As a maximum, the drive can be assembled with a 230 V module, one additional accessory component (auxiliary contact or potentiometer) and the split range unit.
Fitting outdoors. If the devices are fitted outdoors, additional measures must be taken in order to protect them from the weather.

Additional technical information

The yellow housing (consisting of the front and back sections and the connecting lid) only serves the purpose of a cover. The pushbuttons for manual adjustment are located on the front. The DC motor, the control electronics, the load-bearing parts and the maintenance-free gear unit are accommodated in the housing. The drive shaft and column are made of rustproof materials. The interior plates, the gear unit and the springs are made of steel. The valve axle guideway and the valve collar connection are made of die-cast aluminium.
Note on ambient temperatures: if the medium temperature in the valve is up to $110^{\circ} \mathrm{C}$, the ambient temperature may reach $60^{\circ} \mathrm{C}$. For medium temperatures above $110{ }^{\circ} \mathrm{C}$, the ambient temperature must not exceed $55^{\circ} \mathrm{C}$, or insert accessory 0372336180 (adaptor).

Auxiliary changeover switch
0372333001 Switching capacity max. 250 V , min. current 250 mA at 12 V (or 20 mA at 20 V) Switching capacity max. $12 \ldots 30 \mathrm{~V}=$, max. current 100 mA
0372333002 Switching capacity max. $250 \mathrm{~V} \sim$, min. current 1 mA at 5 V Switching capacity max. 0.1... $30 \mathrm{~V}=$, current $1 . . .100 \mathrm{~mA}$ Even if used only once above 10 mA or up to 50 V , the gold coating will be destroyed. The switch can then be used only for higher switching outputs.

Warnings

- If the temperature of the medium in the valve is high, the drive columns and the shaft may also reach high temperatures.
- Drives with safety functions must be regularly checked to see that they are in working order (trial run).
- If a failure of the final control element could cause damage, additional protective precautions must be taken.
- It is forbidden to dismantle the springs in the device due to the high risk of injuries.

CE conformity

EMC Directive 2004/108/EC Low Voltage Directive 2006/95/EC
EN 61000-6-2 *) EN 60730-1
EN 61000-6-4 EN 60730-2-14

Pressure Equipment Directive 97/23/EEC. Category IV, Fluid Group II, Modules B+D
DIN 32730
Approval centre: TÜVCE-0035
DIN EN 14597

Desired character. curve	Switch coding	Characteristic curve for valve	Characteristic curve for drive	Effective on valve
	Off			
$\begin{aligned} & . \frac{0}{0} \\ & \frac{\pi}{0} \\ & \frac{\pi}{3} \\ & 0 \end{aligned}$				
$\begin{aligned} & \stackrel{\vdots}{\mathscr{O}} \\ & \stackrel{C}{\triangle} \end{aligned}$				
$\lim ^{100}=\text { factory setting }$				

B10376

Run time per mm	Switch coding	Run time for 14 mm stroke	Run time for 20 mm stroke	Run time for 40 mm stroke
2s		$28 \mathrm{~s} \pm 1$	$40 \mathrm{~s} \pm 1$	$80 \mathrm{~s} \pm 2$
4s		$56 \mathrm{~s} \pm 2$	$80 \mathrm{~s} \pm 2$	$160 \mathrm{~s} \pm 4$
6s		$84 \mathrm{~s} \pm 4$	120s ± 4	$240 s \pm 8$
fing = factory setting				

[^0]: 1) The return travel time corresponds to a stroke of 14 to 40 mm and does not depend on the run-time that is set Also for 2-point or 3-point depending on connection for 24 V -
[^1]: initialisation
 upper stop guide or 'CLOSED' position reached
 lower stop guide or 'OPEN' position reached drive is running, controlling towards 'CLOSED' position
 drive is stationary, last direction of running 'CLOSED'
 drive is running, controlling towards 'OPEN' position
 drive is stationary, last direction of running 'OPEN' waiting time after switching on or after emergency function no voltage supply (terminal 21)

