VUG: Flanged through valve, PN 25/16

How energy efficiency is improved

Accurate control with high reliability.

Areas of application

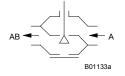
Continuous control of cold/warm/hot water, water vapour and air in HVAC systems, in closed networks. Water quality as per VDI 2035. Assembly with AVP 242 to AVP 244 actuators as a regulating unit.

Features

- Nominal pressure 25 bar for DN15 to DN150, nominal pressure 16 bar for DN15 to DN80
- Control valve contains no silicone grease; painted black
- Nominal diameters DN15 to DN150
- Equal-percentage characteristic
- With the spindle retracted, the valve is closed
- Closes against or with the pressure
- Temperature range up to 240°C

Technical description

- Valve with flange connection as per EN 1092-2, Form B, raised face
- Ductile cast iron valve body
- Stainless steel valve seat
- Stainless steel spindle
- Stainless steel plug in nominal diameters DN15 to DN50, with glass-fibre-reinforced PTFE sealing ring
- Stainless steel plug in nominal diameters DN65 to DN150, metal-on-metal seal
- Maintenance-free brass stuffing box with spring-loaded PTFE washer


Туре	Nominal diameter DN	Connection PN	k _{VS} value m³/h	Weight kg	
VUG 015 F374	15	25 / 16	0.16	4.0	
VUG 015 F364	15	25 / 16	0.25	4.0	
VUG 015 F354	15	25 / 16	0.40	4.0	
VUG 015 F344	15	25 / 16	0.63	4.0	
VUG 015 F334	15	25 / 16	1	4.0	
VUG 015 F324	15	25 / 16	1.6	4.0	
VUG 015 F314	15	25 / 16	2.5	4.0	
VUG 015 F304	15	25 / 16	4	4.0	
VUG 020 F304	20	25 / 16	6.3	5.0	
VUG 025 F304	25	25 / 16	10	5.6	
VUG 032 F304	32	25 / 16	16	9.1	
VUG 040 F304	40	25 / 16	25	11.2	
VUG 050 F304	50	25 / 16	40	13.8	
VUG 065 F304	65	25	63	25	
VUG 065 F316	65	16	63	25	
VUG 080 F304	80	25 / 16	100	37	
VUG 100 F304	100	25 / 16	160	50	
VUG 125 F304	125	25	250	75	
VUG 150 F304	150	25	340	100	

Operating temperature ¹⁾	-20240 °C	Dimension drawing	DN 1550	M10427
Operating pressure	up to 120 °C 25 bar		DN 65150	M10447
	up to 240 °C 20 bar			
	-2010°C 18 bar	Fitting instructions		
VUG065F316	up to 240 °C, 16 bar		DN 1550	MV 505947
Valve characteristic	equal-percentage		DN 65150	MV 505973
Valve control ratio	> 50:1	Assembly	AVP 242	MV 506012
Stuffing box	Brass / PTFE	Assembly	AVP 243 / 244	MV 506013
Leakage rate at max. ∆ps:	≤ 0.05% of k _{vs} value	-		
Stroke DN 1550	20 mm	Material declaration		MD 76.120
DN 65150	40 mm			

At temperatures below 0°C, use the stuffing box heater; at temperatures above130 °C or 180 °C use the appropriate adaptor (accessory).
Down to -10 °C, as per AD code of practice W 10. Water with anti-frost products and brines.

Valves for cold water applications below 20 °C, at media temperature below 0 °C also need to have stuffing box heaters (e.g.: VUG015F304S). Valves with stuffing boxes containing silicone do not comply with the standard for regulating units as per DIN 32730.

Accessories

0372336 180* Adaptor (required for medium > 130 $^{\circ}$ C / < 180 $^{\circ}$ C; MV 505902) **0372336 240*** Adaptor (required for medium > 180 $^{\circ}$ C / < 240 $^{\circ}$ C; MV 505902)

0378283 001 Replacement pack for stuffing box, nominal diameter DN 15-150; MV 505950

z378284 100* Stuffing box heater, 230 V~; 15 W, for media below 0 °C; MV 505978 **0378284 102*** Stuffing box heater, 24 V~; 15 W, for media below 0 °C; MV 505978

0378285 001 Stuffing box, stainless steel / PTFE DN 15...150

0378384 001 Anti-torsion device DN 65...150

*) Dimension drawing or wiring diagram available under the same number

Warranty The technical data and pressure differences indicated here are only applicable in combination with Sauter actuators. Any warranty shall lapse if actuators from other manufacturers are used.

Combination of VUG, PN 25/16 with pneumatic drive AVP 242...244

Combination of VCC, 114 20/10 With prica					
Drive	AVP 242 F021				
Perm. press. p _{stat}	≤ 25 bar				
Running time 1)	8 s				
Stroke	20 mm				
Valve	Δp _{max} Δp _s				
VUG 015	16.0	16.5			
VUG 020	13.0	13.0			
VUG 025	8.8 8.8				
VUG 032	5.5	5.5			
VUG 040	3.7	3.7			
VUG 050	2.5	2.5			

For temperatures above 130 °C, accessories are required

Drive Perm. press. p _{stat} Running time ¹⁾ Stroke	AVP 243 F021 ≤ 25 bar 24 s 20 mm		A	VP 244 ≤ 25 b 40 s 20 m	oar S	
Valve	Δp_{max}	Δp_s		Δp_{max}	Δp_s	
VUG 015	16.0	22.7		16.0	25.0	
VUG 020	16.0	18.0		16.0	25.0	
VUG 025	12.2	12.2		16.0	24.5	
VUG 032	7.8	7.8		15.5	15.5	
VUG 040	5.2	5.2		10.3	10.3	
VUG 050	3.3	3.3		6.6	6.6	

For temperatures above 130 °C, accessories are required

Drive Perm. press. p _{stat} Running time ¹⁾ Stroke	AVP 243 F031 ≤ 25 bar 24 s 40 mm		≤:		F031 par s m	
Valve	Δp_{max}	Δp_s		Δp _{max}	Δp_s	
VUG 065	2.2	2.2		4.4	4.4	
VUG 080	1.5	1.5		3.0	3.0	
VUG 100	1.0	1.0		2.0	2.0	
VUG 125	0.7	0.7		1.3	1.3	
VUG 150	0.5	0.5		1.0	1.0	

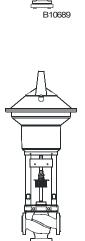
For temperatures above 130 °C, accessories are required

1) In relation to the Centair air rate (400 I_n/h) and to a pipe with length of 20 m and diameter of 4 mm

Valve: Variant F, for technical data and accessories see Valve Type Table

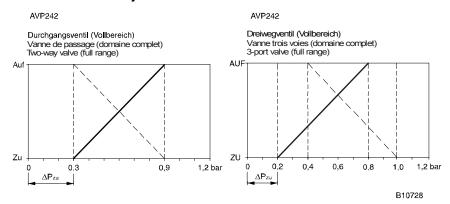
Drive: Variant F, for technical data, accessories and installation position see section 71

Example: VUD 065 F300 / AVP 243 F031

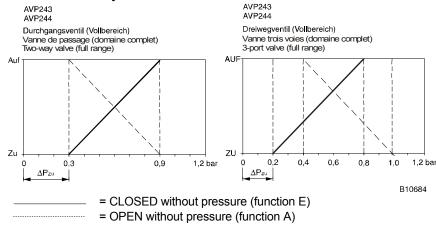

Valve is closed when actuator is pressureless = factory setting Valve is open when actuator is pressureless = on request

 Δp_{max} [bar]= Maximum permitted pressure difference across the valve at which the drive can still reliably open and close the valve, taking account of Δp_{v} .

Maximum permitted pressure difference across the valve in case of a fault (pipe break


downstream of the valve) at which the drive can close the valve reliably with 'fast' performance of

the stroke.



 Δp_s [bar]=

Pressure-stroke characteristic (with valve fitted) Characteristic is not adjustable:

Characteristic is adjustable:

Sequences with XSP31 are possible

Function

The valve can be controlled into any intermediate position by means of an electric drive. If the valve stem is extended, the control passage of the valve is closed. The direction of flow marked on the valve must be observed. Please observe the direction of flow through the valve. Closure with the pressure is not permissible with pneumatic drives, since it would cause pressure surges. Parameters related to flow mechanics conform to EN 60534.

Closing against the operating pressure

Description

The key features of these control valves are their high reliability and precision, and they make a major contribution towards environment-friendly control. They meet demanding requirements including safety functions, coping with differential pressures, controlling the medium temperature and providing a shut-off function; all this is achieved with a low noise level.

An automatic and fixed connection is made between the valve stem and the drive shaft. The professional Sauter plug, made of stainless steel, controls an equal-percentage flow in the control passage. The tightness of this valve is guaranteed by the stainless steel ring pressed into the seat and the corresponding valve plug.

The stuffing box is maintenance-free; it consists of 6 conical PTFE rings and a spring. The spring ensures constant tension in the seals, thereby guaranteeing tightness in relation to the valve stem. In addition, a grease reserve ensures constant lubrication of the valve stem. The grease reserve also prevents any particles that might be present in the medium from reaching as far as the PTFE seal.

Engineering and fitting notes

The drive is placed directly on top of the valve and is fixed with screws. The connection between the drive and the valve stem is made automatically. The closing point must be set as described in the installation instructions (MV 506012 AVP 242 or MV 506013 AVP 243/244).

Installation position

The final control element can be installed in any desired position, but an installed position facing downwards is not recommended. Condensate and water drips etc. must be prevented from penetrating into the drive. With a horizontal installed position, the permitted maximum weight on the valve is 25 kg unless a support is provided by the customer or others.

up to 130 °C: in any position, but not facing downwards.

above 130 °C:

at temperatures above 130 °C or 180 °C respectively, the horizontal installed position is recommended and the adaptor corresponding to the temperature must be inserted. However, the adaptor can also serve as an extension so as to bring the drive out of the pipe insulation. The pipes must be insulated to protect the actuator against great heat.

When fitting the drive onto the valve, you must make sure that the plug is not rotated on the stainless steel seat (this would damage the sealing surface). If the valve is insulated, the insulation must only extend as far as the connecting clip of the drive.

If there is a requirement for a split range of adjustment, improved setting accuracy, increased setting speed and air rate or reversible direction of operation, the drive can be fitted with positioner XSP 31, see section 79.

Applications with steam

The valves can be used for steam applications up to 200 $^{\circ}$ C with the same Δp_{max} values shown in the combination tables. However, we advise you only to use the valves for OPEN-CLOSED switching. For use as a control valve, you should make sure that the majority of the work is not done in the lower third of the valve stroke range. In this position, an extremely high flow speed would develop, severely reducing valve's lifetime.

Applications with water

To ensure that impurities in the water (such as welding beads or particles of rust, etc.) are retained and the stem seal is not damaged, it is advisable to install collective filters, e.g. for each storey or pipe run. Water quality requirements conform to VDI 2035. If an additional medium is used, the compatibility of the valve materials must be clarified with the manufacturer of the medium. The Material Table shown below can be used for this purpose. If glycol is used, we recommend that a concentration of between 20% and 55% should be selected.

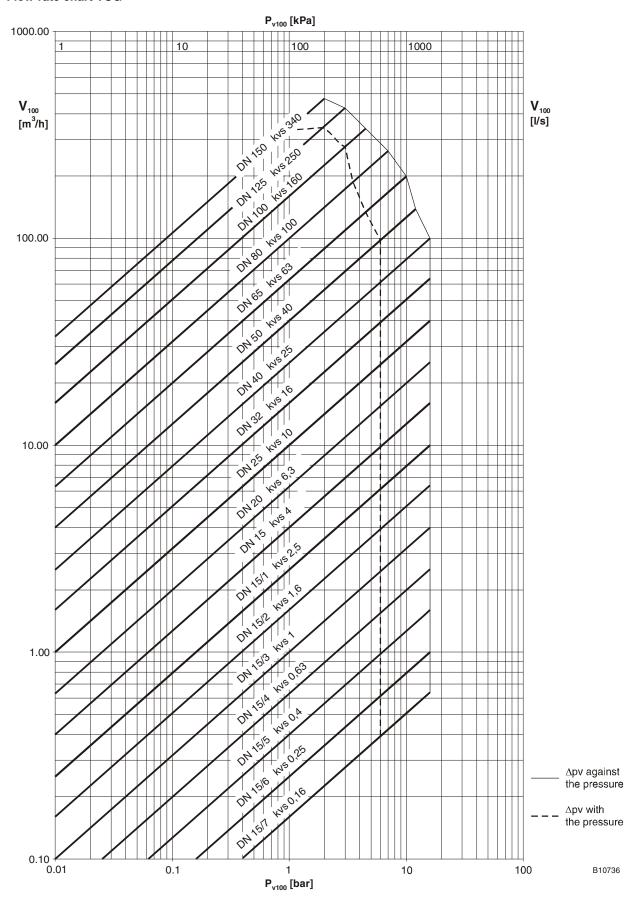
The valves are not suitable for drinking water or in zones where there is a risk of explosions.

Other notes concerning hydraulics and noises in systems

The valves can be used in a low-noise environment. To avoid noises, the pressure differences Δp listed below should not be exceeded. These are shown as recommended values in the pressure loss table

Pressure difference Δp_V is the maximum pressure that may be present on the valve, regardless of the stroke position, so that the danger of cavitation and erosion is limited. These values are independent of the drive force. Cavitation accelerates wear and causes noises. To prevent cavitation, which mainly occurs with applications involving vapour or steam, differential pressure Δp_{max} should not exceed value Δp_{krit} :

 $\Delta pkrit = (p1 - pv) \times 0.5$


p1 = upstream pressure in front of the valve (bar)

pv = steam/vapour pressure

Absolute pressure is used for the calculations.

The close/off pressure values which are also listed represent the maximum pressures at which the drive can still use its own force to move the valve. It should be pointed out here that if these pressures are used and the pressure difference Δp_{max} is exceeded, the valve may sustain damage due to cavitation and erosion. In case of a spring return function, the stated Δp_{s} values also represent the permitted differential pressure up to which the drive guarantees closure of the valve in case of an incident. As this is a safety function with 'fast' passage through the stroke (by means of the spring), this value may exceed Δp_{max} . The valves are not suitable for drinking water or in zones where there is a risk of explosions.

Flow-rate chart VUG

Additional technical data

Туре	Δρν		
	against the	with the	
	pressure	pressure	
VUG 015 F374	16 bar	_	
VUG 015 F364	16 bar	_	
VUG 015 F354	16 bar	_	
VUG 015 F344	16 bar	_	
VUG 015 F334	16 bar	_	
VUG 015 F324	16 bar	_	
VUG 015 F314	16 bar	_	
VUG 015 F304	16 bar	_	
VUG 020 F304	16 bar	_	
VUG 025 F304	16 bar	_	
VUG 032 F304	16 bar	_	
VUG 040 F304	16 bar	_	
VUG 050 F304	12 bar	_	
VUG 065 F304	10 bar	_	
VUG 080 F304	7 bar	_	
VUG 100 F304	4,5 bar	_	
VUG 125 F304	3 bar	-	
VUG 150 F304	2 bar	_	

□Pressure and temperature da	ta	EN 764, EN 1333
☐Parameters related to flow me	echanics	EN 60534
☐Sauter slide rule for valve sizi	ng	7 090011 001
		7 000129 001
☐Technical manual: 'Regulating	g Units'	7 000477 001
☐Parameters, installation notes	s, control, general	Valid EN, DIN, AD,
		TRD and UVV
		specifications
		/regulations
☐CE conformity, Pressure Equ	pment Directive (fluid group II)	97/23/EC
□VUG 015 to VUG 040:	no CE symbol	Article 33
□VUG 050 to VUG 150	CE symbol	Category I
□VUG:	CE-0035 symbol	Category IV
		DIN 32730

Additional information

Valve body made of ductile cast iron to EN 1563. Code EN-GJS-400-18-LT. Material number EN-JS1025 with smooth drilled flanges to EN 1092-2, form B, sealing strip. Valve body to RAL 9005, dark black. Recommendation for welding-neck flange as per EN 1092-1 Overall valve length to EN 558-1, basic series 1. Flat seal on valve body made of asbestos-free material.

DIN material numbers

	DIN material number	DIN designation
Valve body	EN-JS1025	EN-GJS-400-18-LT (GGG40.3)
Valve seat	1.4021	X 20 Cr 13
Stem	1.4305	X 8 Cr Ni S 18-9
Plug	1.4305	X 8 Cr Ni S 18-9
Plug seal	PTFE	reinforced glass-fibre
Stuffing box	CW 617 N	Cu Zn 40 Pb 2
Seal below stuffing box	CW024A	Cu-DHP

Detailed information on pressure difference definitions

Δpv:

Maximum permitted pressure difference across the valve for every position of the stroke, limited by noise level and erosion.

This parameter specifically characterises the hydraulic behaviour of the valve as an element through which a flow passes. Monitoring of cavitation and erosion, and the associated development of noise, will improve the valve's lifetime as well as its usability.

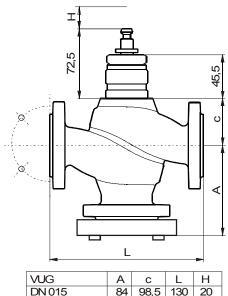
∆pmax:

Maximum permitted pressure difference across the valve at which the drive can reliably open and close the valve.

The following are taken into account: static pressure and influences related to flow mechanics. Faultless performance of the stroke and tightness are guaranteed with this value, and in no case is valve value Δp_V exceeded.

Δps:

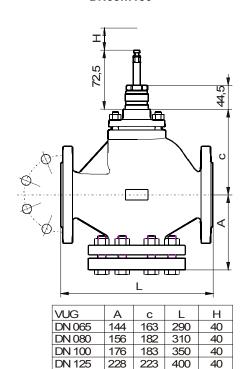
Maximum permitted pressure difference across the valve in case of a fault (such as a voltage failure, excessive increase in temperature and pressure, and pipe break) at which the drive can close the valve tightly and can hold the full operating pressure against atmospheric pressure if need be. As this is a safety function with a 'fast' performance of the stroke, Δps may be greater than $\Delta pmax$ or Δpv . The disruptive influences arising here in connection with flow mechanics are quickly passed through, and are of secondary importance in this functioning mode.


For three-way valves, the values apply only to the control passage.

∆pstat:

Line pressure across the valve. Essentially corresponds to the dead pressure with the pump switched off, caused (for example) by the fluid level in the system, increase in pressure due to the pressure tank, steam pressure, etc.

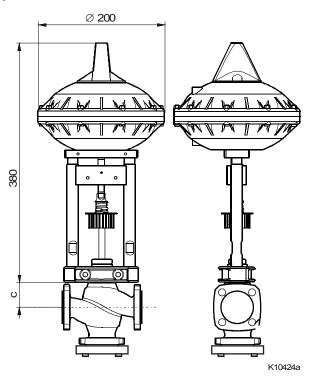
Dimension drawings



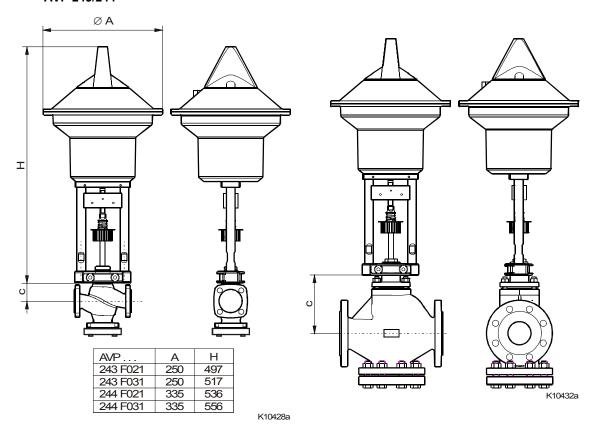
VUG	Α	С	L	Н
DN 015	84	98,5	130	20
DN 020	94	92,5	150	20
DN 025	97	94,5	160	20
DN 032	110	103,5	180	20
DN 040	116	107,5	200	20
DN 050	126	111,5	230	20
DN 065 / PN16	144	163,0	290	40

M10427c

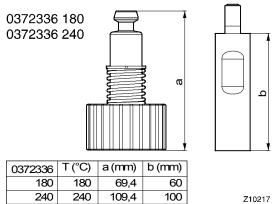
DN65...150

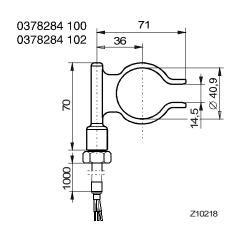

242

257

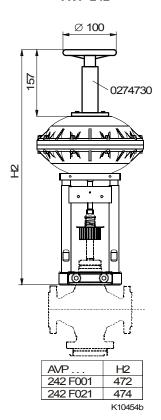

DN 150

M10447a

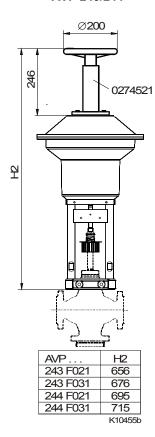

AVP 242 F021



AVP 243/244



Accessories



AVP 242

AVP 243/244

